
 User Manual 19. June 2013

By: Jesper Nielsen – uCommerce Page 1 of 15

User Manual
for uConnector

 User Manual 19. June 2013

By: Jesper Nielsen – uCommerce Page 2 of 15

1. INTRODUCTION .. 3

1.1. WHAT IS UCONNECTOR? ... 3

1.2. THE ARCHITECTURE OF UCONNECTOR ... 3

1.2.1. Tasks and Operations ... 4

1.2.2. Receivers, Transformers and Senders ... 4

2. GETTING STARTED .. 6

2.1. UCONNECTOR SAMPLES SOURCE .. 6

2.2. LOCAL DIRECTORIES .. 6

2.3. UMBRACO SETUP WITH UCOMMERCE .. 6

2.4. TEST UCONNECTOR .. 7

3. UCONNECTOR AS A SERVICE .. 8

3.1. INSTALL .. 8

3.2. UNINSTALL .. 9

4. EXAMINING MYSAMPLEOPERATION ...10

4.1. CREATING AN OPERATION WITH THE FLUENT API .. 10

5. TEST RUN A TASK ..12

6. ENABLE AND RUNNING AN OPERATION USING THE SERVER ...13

 User Manual 19. June 2013

By: Jesper Nielsen – uCommerce Page 3 of 15

1. Introduction
This is not a typical user manual, but more of a guidance of how certain problems can be solved using

uConnector.

Furthermore it will contain some tips of some of the built-in senders, receivers, adapters and cogs.

1.1. What is uConnector?
uConnector is a pluggable, extendable framework for integration code, moving data from one system to

another.

It is an attempt at bringing structure and reusability to the many console applications created for

1. Receive data from system A.

2. Transforming data from system A to system B format.

3. Sending transformed data to system B.

The framework makes it:

 Easy to set up a scheduled execution of code.

 Easy to install and run as a windows service.

 Easy to reuse component for reading data from and sending data to systems.

 Easy to overrule the framework behavior, by adding your own components.

The extendable structure makes it:

 Easy to distribute components created for specific systems, such as “uCommerce”.

1.2. The architecture of uConnector

 User Manual 19. June 2013

By: Jesper Nielsen – uCommerce Page 4 of 15

uConnector is the active part in the transferring of data between systems. This means that uConnector

contacts system A for data. System A does not contact uConnector. As a consequence, the transferring of

data is intended to be in larger batches at regular intervals.

uConnector is specifically not intended as an event listener, waiting for events to fire in system A.

Frameworks based upon listening for events, and then transferring a small amount of data each time, tends

to become very “chatty”. The error and recovery scenarios can easily become very complex. What if the

listener is offline? What if the data is lost after reception?

The architecture for uConnector is aiming for simplicity, robustness and reusability.

Users of uConnector can spend their time writing business specific code! The framework handles all the

tedious bits.

Please note that uConnector is not tied to any two specific systems. The same server instance can have

tasks configured to move data between many different combinations of source and target systems.

1.2.1. Tasks and Operations

An Operation is a description one flow of “Receive, Transform and Send” put together by basic

components. So an operation is a sequence of steps to perform. An operation can typically be configured

with information like, where to look for data files, usernames and passwords needed to perform the

operation, etc.

A Task, is simply a schedule and an operation with a specific configuration. So a Task is “When to perform

which operation with what configuration”.

1.2.2. Receivers, Transformers and Senders

Receivers, Transformers and Senders are the basic building blocks of operations.

Receivers are responsible for receiving data from an external system. For example:

 Reading files from a local directory.

 Reading files from an Ftp server.

 Reading data from a table in a database.

 Reading data from an external system: uCommerce, ERP system, etc.

 Reading data from a web service.

 Etc.

Data can be anything and come from anywhere!

Transformers are responsible for transforming the data received by a receiver into a different format. For

example:

 XML data into CSV data.

 CSV data into data tables.

 Data tables into a proprietary format.

 User Manual 19. June 2013

By: Jesper Nielsen – uCommerce Page 5 of 15

 Etc.

Data can be transformed from any format to any other format!

Senders are responsible for sending data to an external system. For example:

 Writing data to a file.

 Sending a file to an Ftp server.

 Writing data to a database.

 Posting data to a web site.

 Etc.

Data can be send anywhere!

 User Manual 19. June 2013

By: Jesper Nielsen – uCommerce Page 6 of 15

2. Getting started
The uConnector samples source contains everything you need to get started using uConnector. It contains

the latest instance of the uConnector executable “UConnector.Worker.exe” and all the dependent

assemblies.

2.1. uConnector samples source
Clone the source of the samples project from www.bitbucket.org with your favorite Hg tool.

The url is: https://bitbucket.org/uCommerce/uconnector-samples

Since this is still public there are no password protection on this, this could however change is the future

without warning.

This will be cloned to the following directory:

 C:\Hg\uConnector Samples\

For the rest of this “User manual” that will be referenced to as the “source” directory.

2.2. Local directories
For the best experience and so you don’t have to change too many configuration files, we suggest that you

use the following structure.

On the C-Drive create this directory structure.

 uConnector

o ConfigFiles

o FromFtp

o In

o Out

2.3. Umbraco setup with uCommerce
 Installation guide for Umbraco can be found at:

o http://our.umbraco.org/wiki/how-tos/a-complete-newbie's-guide-to-umbraco

 Installation guide for uCommerce can be found at:

o http://www.ucommerce.dk/screencasts/uCommerceTV-01-Installing-uCommerce.mov

http://www.bitbucket.org/
http://our.umbraco.org/wiki/how-tos/a-complete-newbie's-guide-to-umbraco
http://www.ucommerce.dk/screencasts/uCommerceTV-01-Installing-uCommerce.mov

 User Manual 19. June 2013

By: Jesper Nielsen – uCommerce Page 7 of 15

2.4. Test uConnector
In the source directory to go: “lib\uConnector”.

This should contain a file called:

 UConnector.Server.exe.config.default

Make a copy of it and name it:

 UConnector.Server.exe.config

This will be the main configuration file for the uConnector.

Afterwards compile the uConnector samples project.

This requires that you have the path where msbuild lives in your system environment PATH variable. If you

don’t, you need to supply the complete path to msbuild.

This compiles the uConnector Samples project with the configuration “Release” and target platform “Any

CPU”. This can also be done from visual studio if you are more confident with that way, but is out of scope

of this guide.

Changes to above configuration file:

In the section “uConnector” make the following changes.

The “taskPaths” should point to directories containing operation configurations. If you compiled the

Release is should be some like this:

 <add path="C:\Hg\uConnector Samples\src\uConnector.Samples\bin\Release\Tasks" />

If you have more directories that contain Tasks just append them.

The “assemblyPaths” should contain paths where the assemblies for the tasks is placed. If you compiled the

“Release” this should be placed in the following directory.

 <add path="C:\Hg\uConnector Samples\src\uConnector.Samples\bin\Release" />

Paths can also be relative from the “UConnector.Worker.exe”.

Now try and run the application:

 User Manual 19. June 2013

By: Jesper Nielsen – uCommerce Page 8 of 15

Figur 1 When starting uConnector for the first time

You should see some like the above in the beginning.

After some time it should display some exception like the following

Figur 2 Exception when no operations are enabled

That just tells you that it found 8 operations, but none of them were enabled. This is exactly what it should

do, since none of them are enabled by default.

Press “CTRL + C” to exit the console runner.

3. uConnector as a Service

3.1. Install
If you install uConnector on a server, it’s more likely that you want to run uConnector as a service, since it

will start automatically when the server boots.

 User Manual 19. June 2013

By: Jesper Nielsen – uCommerce Page 9 of 15

This will create the following entry in the services snap-in.

Please note after installation of the service it will not start. You have to do that manually afterwards.

If you need to see what’s going on, the system uses log4net. By default uConnector uses a

RolingFileAppender and logs to: log.txt . You can change the logging settings in the uConnector

configuration file created in “Test uConnector” section of this document.

3.2. Uninstall
If you need to uninstall it, just issue the following command and you are done.

 User Manual 19. June 2013

By: Jesper Nielsen – uCommerce Page 10 of 15

4. Examining MySampleOperation
It is time to take a closer look at the first sample operation!

4.1. Creating an operation with the fluent API
MySampleOperation is a very simple operation, which reads an XML file containing book data and writes

the names of the authors to a text file.

This is done using only already available components!

Find the file called MySampleOperation.cs in the Samples project. It is in the folder called “Operations”.

Make the class inherit from the uConnector framework class “UConnector.Operation”.

UConnector.Operation is an abstract class with one virtual method called BuildOperation() that returns a

UConnector.IOperation instance.

To get an IOperation instance we use the UConnector fluent configuration api. Add the using statement

“using UConnector.Api.V1;”

This gives us access to the class FluentOperationBuilder. This is what is used to build uConnector

operations. The code looks like this:

 User Manual 19. June 2013

By: Jesper Nielsen – uCommerce Page 11 of 15

What does all this mean? Well, remember that an operation is basically something that receives data,

transforms data and finally sends data.

Let us go through the code, line by line.

 “Receive<FilesFromLocalDirectory>()”

Starts the operation by using the standard receiver called FilesFromLocalDirectory. This standard

receiver reads files from a local directory, and passes the files along to the next step in the

operation.

 “WithOption(x => x.Pattern = "*.xml")”

Instructs the operation to set the Pattern option on the FilesFromLocalDirectory receiver to look for

xml files. FilesFromLocalDirectory has many other options, but we leave the setting of those to the

task configuration file. In general, the method WithOption always refers to the previously added

step. You can have as many WithOptions in a row as needed.

 “Debatch()”

The type returned by FilesFromLocalDirectory is IEnumerable<WorkFile>. So it is a batch of files. So

calling Debatch() instructs the framework to process the files one at a time.

The type WorkFile is a simple wrapper type around a Stream, for reading the file, and information

about the filename and location.

 “Transform<WorkFileToXDocument>()”

The output from the previous step was a WorkFile. This standard transformer takes a WorkFile and

transforms it into an XDocument.

 “Debatch<XDocumentToXElements>()”

This transforms the XDocument into a number of elements, and instructs the framework to

Debatch the resulting list of XElements. The type is XElement after the debatching.

 “WithOption(x => x.DescendendsName = "author")”

Sets the configuration option “DescendantsName” on the previous step to “author”. This instructs

the previous step to iterate over all elements called “author” in the XDocument it receives.

 “Transform<XElementToValue>()”

A simple transformer that takes an XElement and returns the value of the element. This is of type

string. You can find the code for this transformer included in the Samples project.

 “Batch()”

The previous step produces a whole number of strings. This instructs the framework to gather them

into one large batch, the type of which is IEnumerable<string>

 “Transform<DistinctFilter<string>>()”

Yet another simple transformer. This one simply filters the input to only pass on distinct values.

 “Send<StringsToFileInLocalDirectory>()”

The last step in the operation is, of cause, a sender. This particular sender takes a number of strings

writes them to a file. The configuration of the sender, such as the file name and the directory to

write the file to, we leave for the configuration of the task.

 “ToOperation()”

And finally we instruct the fluent builder that we are done defining the operation, and to please

build it for us.

 User Manual 19. June 2013

By: Jesper Nielsen – uCommerce Page 12 of 15

Phew! A lot of words for not so much code. Hopefully the code is easier to intuitively read, than to describe

in words.

This was a simple example of an operation. When if we want to run this operation we need to create a Task

for it. This is done using a config file placed in the Task directory.

Let’s take a look at a Task that uses MySampleOperation. Look at the file called

“MySampleOperation.config”.

Sorry, it can’t all fit on one page!

Two of the steps in “MySampleOperation” requires configuration. The “FilesFromLocalDirectory” requires

details concerning the place to look for files. And “StringsToFileInLocalDirectory” requires details about

where to write the output file.

The last thing to configure is the scheduling of the task. How often should it run? In this example we use

the “cron” syntax for running the task once every 5 seconds. I strongly encourage you to take a closer look

at the “cron” syntax, to get familiar with it. It is very powerful, and quite easy once you get used to it.

5. Test run a task
Now let’s try running the task “MySampleOperation”!

 User Manual 19. June 2013

By: Jesper Nielsen – uCommerce Page 13 of 15

In Visual Studio select the Samples project as the StartUp project. When you run it, you should see

something like this on the screen:

Enter 5 to run the task!

6. Enable and running an operation using the server
 To enable an operation, go the directory you set in the uConnector configuration.

 Find the operation you want to enable.

 Open it in your favorite editor

 Find the operation section in the XML file and set the “enabled” attribute to “True”

 The operation is now enabled.

You should now be able to able to run uConnector as a Service or console runner and see the Operation

run.

Depending on what operation(s) enabled you should see something like this:

 User Manual 19. June 2013

By: Jesper Nielsen – uCommerce Page 14 of 15

 User Manual 19. June 2013

By: Jesper Nielsen – uCommerce Page 15 of 15

